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Magnetic flux penetration into a non-uniform Josephson 
junction 

V V Bryksin, A V Goltsev, S N Dorogovtsev, Yu I Kuzmin and 
A N  Samukhin 
Ioffe Physico-Technical Institute. 194021 SI Petersburg. Russia 

Received 3 April 1991 

Abstract. The extreme profile of a magnetic field penetrating into a non-uniform Josephson 
junction iscomputed inthecase ofperiodically arrangrdpinningcentresbyuseofa numerical 
solution of a chain of the sine4ordon equations with boundary conditions at the pinning 
centres. It is found that the extreme profile obtained is approximately described by the 
Bean critical-state theory. At sufficiently small spacings we find no stochastic regime for a 
Josephson junction of a finite length. This shows two possibilities: either the front of the 
profile is extremely extended or, at magnetic fields larger than H,,, only a uniform vortex 
distribution is realized. 

1. Introduction 

When increasing a magnetic field above the low critical magnetic field H c l ,  vortices 
penetrate into a Josephson junction (see, e.g., Barone and Paterno 1982, and many 
others). If the junction is non-uniform, then after a fast exponential relaxation a non- 
uniform magnetic field distribution is formed. The distribution starts to relax to a more 
or less uniform distribution which ensures the free-energy minimum. Since the system 
overcomes many potential barriers, this slow relaxation process is non-exponential. 

Such phenomena are well known for hard superconductors of the second type 
(Anderson 1962, Bean 1962,1964, Anderson and Kim 1964, de Gennes 1966). This non- 
uniform state, which is formed after the initial relaxation process has finished, is called 
‘critical’. In the papers by Anderson (1962), Bean (1962,1964) and Anderson and Kim 
(1964) a magnetic induction profile (B(r) )  has been determined phenomenologically by 
use of the condition that demands equality of a local current to the critical current J ,  
at each point of the profile. The function Jc(H) may be found by means of general 
considerations. 

Recently (Bryksin et al1990a, b) we have developed a microscopic theory and have 
obtained the critical profiles B(x)  and Jc(H) for Josephson lattices and specifically for 
the non-uniform Josephson junction. To determine the critical magnetic profile we have 
supposed that in the critical state the vortex density along the Josephson junction has 
maximum possible jumps when crossing pinning centres. Because a phase correlation 
at different pinning centres was neglected, the vortex density jumps have been found 
independently at each pinning centre. That is why the problem under consideration 
becomes local (Bryksin et al1990a, b). 
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Figure 1. Non-uniform Josephson junction (x-z plane) with regularly arranged defects. L is 
the spacing. and ?I is the length of cross junctions &z plane) which act as the defects. 

Below we shall present a computer calculationof critical (or extreme) profiles of the 
vortex density n(x)  (or the induction E(*) H ( x ) )  in a linear non-uniform Josephson 
junction. We shall take into account the phase correlation at different pinning centres, 
computing a chain of the s i n e s o r d o n  equations related by boundary conditions. As a 
result, two regimes are observed. If the distance between pinningcentres is large enough, 
anumber of solutions with non-uniformvortexdensityisfound. Among these solutions, 
a solution w,ith the extreme profile can be found (see crosses in figure 2). The profile is 
placed under a corresponding profile found by Bryksin et nl(1990a. b) without taking 
into account the phase correlation between pinningcentres that occurs in the framework 
of the local approach. 

In the case of a short distance between pinning centres which corresponds to the 
second regime we can find no solution which differs significantly from a periodic one at 
any rate for a Josephson junction of a finite length with periodically arranged pinning 
centres. Moreover, no transition to stochastic behaviour is observed (see figure 3). 
Below we shall discuss magnetic field penetration in the latter case. 

2. Model, computation and results 

Let usconsider a long Josephson junction crossed by short Josephson junctions of length 
21 and spacing L (figure I) (Bryksin er al 1989a. b). Such defects are equivalent to 
microresistors (Kivshar and Malomed 1989) or cavities embedded in a Josephson junc- 
tion. Systems of this type may be obtained practically (Serpuchenko and Ustinov 1987). 

Each piece of the long Josephson junction between two neighbouring defects is 
described by the sine-Gordon equation 

where 8(x) is the phase difference and 6 is the Josephson length. The derivatives of S(x) 
with respect to x on the left and right of the pinning centre with the index n1 are equal to 
each other because of the magnetic fieldcontinuity (Bryksinetal199Oc), i.e. 

The related jump of the phase difference is 

Here 6!? and 
centre. respectively. 

a2 a26/ax2 = sin 6 (1) 

a6:)/ax = a6p/ax = 6g. 

6;) - @ P I  = 26' 

(2) 

(3) m m' 

are the phase differences on the right and left of the nzth pinning 
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Figure 2. Profile of the vortex density n, in the junc- 
tion with parameters L/6 = 100.1/6 = 0.1 where the 
applied external magnetic fieid is shown on the right- 
hand side: +, extreme profile with the initial con- 
ditionxo/6 = -0.78250438:~,aprofilewithxJ6 = 
-0.7835; ---, the extreme profile calculated with 

the local approach (Bryksin er al 1990% b). On the 
left oim = 0, i.e. at - L < x < 0 the phase difierence 
8(x) of the Josephson juFnion decreases in accord- 
ance with equation (4). H, is the averaged magnetic 
field. 

m 

Figure3. Magnetic field H, = BLQP,/lnd at pinning 
centres versus the site index m for diiferent initial 
conditions at m = 0: curve A, one-vortex solution 
(t?h’)=O.l; 8;,6=0.0610929); curve B, almost 
periodic soiution with SL’) = 0.026951 4, 4;6 = 
0.026906: curve C almost periodic solution with 
Oh’) = 2, &6 = 0.5. 

Let the external magnetic field be applied from the right and the magnetic field 
penetrates to the left (figure 2). We shall find an extreme profile which is related to a 
metastable state which has the greatest thermodynamic potential at the applied field. 
Let us fix the position of the profile front on the assumption that n(x < 0) = 0 where n(x)  
is the vortex density and the coordinate x = 0 corresponds to m = 0. 

First we consider the case of large spacing: L + 6. Therefore one supposes that the 
solution decreasing deep into the system for - L  i x < 0 has the form 

W x )  = 4 tan-‘{exp[(x - xo)/6]}. (4) 
The parameterxo/6 determines the phase difference @A3) _= 8(0 - 0) and the derivative 
19;. Thus the initial conditions at site m = 0 (or at the front) are 

8(l) = 4 tan“[exp( -xo/S)] + 218’(0) 

&(O) = 2/cosh xo.  
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This allows one to obtain a solution on the right of m = x = 0. Solutions may be very 
chaotic. Changingx", we look for a solution which at certain m = N gives a maximum 
magnetic field UN and a maximum vortex density nN. In this case the extremely steep 
profileisrealizedand theminimum numberofvorticespenetrateintothesystem through 
the surface. It should be noted that we construct the solution starting from the front of 
themagneticfield. Ifwestartedfrom thesurfaceatafixed8'. wewouldface theproblem 
ofdetermination ofaboundaryphase Swhich relatedto theextremesolutiondecreasing 
deep into the system, i.e. a(-=) = 0 and a( --) = 2nk where k is integer number. 

Foracertainx" thesolutionoftheconsidered problemisdetermined by the following 
procedure. Using (3) and (4). one obtains Sh", Sh3) and 8;. Then by use of the well 
known general solutions of the sine-Gordon equation (see, e.g., Barone and Paterno 
1982) we can find and S; at the next pinning centre and so on. Therefore the phase 
correlation between different pinning centres is exactly taken into account, 

We obtain that the vortex density nN(x0). the flux ON(x0) = ( Q ~ , ' ~ Z ) ~ ? ~ ( X ~ )  which 
penetrates into the system and the corresponding free energy 9(xo) at an external 
magnetic field are not smooth functions of the parametersx" and change considerably 
when xo changes insignificantly (see the two solutions in figure 2 shown by crosses and 
full circles for two values close to xo). This is why it is difficult to determine the upper 
local minimumof9 by meansofthisprocedure. Nevertheless withanincreasing number 
of attempts we can approach the extreme profile. 

Using the procedure with L/6 = 100, //6 = 0.1 and N = 50, after about 15 X 10' 
attemptswe find the profilepresentedin figure2withxo/d = -0.78250438,i.e. thelast 
vortex is pushed out to the left from the pinning centre m = 0 almost completely. In this 
figure we also present the extreme profile obtained by Bryksin et a1 (1990a, b) where 
phase correlations at different pinning centres were neglected: 

CY;+, =CY.?,, + (4/3fi)([/6)[(1 + 2a2,)(1 - c&)(l + a.?,,) 

V V Bryksin et a1 

+ 2(1 + CY5 + , ; ) 3 ' 2 p  a t m > O  

a;" = 0 a t m s O  

6n, = m / z i q i / ( i  +~>ig. ~~ 

Here K(x) is the elliptic integral of the first type, In the region 
H,, Q fi < H,(H,, = 2Qo/nz6d ,  Ha =- Q0/21d, d = 2AL + d' is the junction effective 
thickness and AL is London penetration depth) the magnetic profile ( 5 )  takes the simple 
form (Bryksin et a1 1989a. b) 

( 5 )  
~ ~~ ~ ~ ~~~~ 

~~ 

U = H,,nl(x - yo)/26L (6) 

J ,  = 2je1/6 (7) 
which is equivalent to that obtained from the Bean (1962, 1964) theory. Here 
j c  = hc'/8nb2ed is the critical Josephson current and y o  is a parameter that does not 
coincide with the front position. 

Figure 2 shows that at fields H,, Q H Q H, the computed magnetic profile has a 
shape which is close to linear. Therefore the magnetic penetration has a Bean character. 

The phase correlation may be neglected if the jump of the vortex density at every 
pinningcentre issufficiently large: An,L = L1/a2 9 1, where Anm n ,  - n,"-, (see (5) 
and Bryksin er a/ (1990a, b)). Therefore, the larger the L, the closer is the extreme 
profile to the profile presented by the broken line in figure 2. Nevertheless at a fixed L 
the extreme profile wiU lie below the line. Moreover it should be noted that for a finite 
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number of attempts we cannot achieve the extreme profile. So the true extreme profile 
is placed between the crosses and the broken line in figure 2. This deviation of the 
computed profiles from the profile predicted by the local theory shows the absence of 
the local relation between the magnetic induction B(x)  and the critical current J,(B). 

Now we consider the case of small L. For all initial conditions which we used we 
could not find non-periodic solutions at least for a length of order 100 L (see figure 3 for 
L/6 = 1/6 = 0.1, curves B and C). 

Let us discuss possible solutions which decrease atx+ - W. At small L/6, equation 
(4) is useless for the initial condition at the ‘front’. One must use the asymptotic relation 
between the phase @and the derivative 8‘ obtained in appendix A on the basis of a linear 
approach: 

B;/8b3) = 1 - (21/6)[21/6 - 1 + exp(L/G){cosh(L/G) 

+ (1/6)sinh(L/6)) + \/[cosh(L/G) + (1/6) sinh(L/6)l2 - l}l-’. (8) 

This equation ensures that 8 and 8‘ tend to zero at x + --. We find that all solutions 
obeying the initial condition (8) at x = 0 are not different from the one-vortex solution, 
at least for a scale of lOOL periods (see curve A in figure 3). The parameters of these 
solutions are renormalized and differ from parameters of the one-vortex solution for a 
uniform Josephson junction (Bryksin et a1 1989b). Thus at small L/6 for the junction 
with pinningcentres arranged periodically we cannot find ‘chaotic solutions’ of the type 
presented in figure 2. However, it should be noted that in terms of our computer 
procedure we consider the system of finite length (almost 1OOL) only. Therefore we 
cannot state that no stochasticity appears for larger lengths in our system. 

We can discuss two possibilities. Firstly, at all lengths, only periodical solutions are 
possible. This means that, at H > H:, , vortices penetrate uniformly into the whole 
sample and no critical state exists (here H:, is the effective critical field for the system 
considered). Thissituationis realized at An, L = Ll/Sz S 1. The same parameter (2Ll/ 
@) appears in the framework of the Frenkel-Kontorova model: 

E = E J (  (@,+I - + ZA(1 - cos . B m ) j .  
m 

(9) 

In appendix B it is proved that at L Q 1 6 our model is equivalent to the Frenkel- 
Kontorova model with A = 2L1/6’ and E, = E,S/161 where E, is the Josephson energy. 
It is well known that the parameter A determines the depinning threshold of incom- 
mensurate structures in the Frenkel-Kontorova model (Peyrard and Aubry 1983, de 
Seze and Aubry 1984). 

Secondly, a perceptible change in the vortex density can occur on sufficiently large 
scales. This makes it difficult to observe a deviation from a regular solution. Let us 
estimate a minimum distance between two last vortices at the front of a magnetic field 
penetrating into the junction. As we have noted above, at L -=z 1 Q 6, the considered 
system may be described by the model (9) (see also appendix B), In  terms of the Frenkel- 
Kontorova model the energy of a separated vortex in a multi-vortex solution depends 
on the coordinate xu of its centre: 

E,(xo)/Eo = S f i  + 16x2 exp( - x 2 / ~ )  cos(2zxo/L). (10) 

The interaction energy of two vortices placed at a distance 2? from each other which is 
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much greater than the soliton width 6* is determined by (Frank and van der Merwe 

V V Brybin et ai 

1949) 

E , " , ( ~ ) / E , ,  = 3 2 V l e x p ( - ~ V X / ~ )  ~ % 6 *  =  LA-'^. (11) 

Fp = 32z3(Eo/L) e x p ( z z / f i )  = 32A(Eo/L) exp(VT2,'L). 

The minimum distance between these two vortices is determined by the equality of the 
repulsive force aE,,,(%'e)/a2 to a pinning force Fp: 

(12) 
Hence we obtain 

2E,i,/L - z=/n - z262/2Ll, 

Therefore in the considered range L 4 l Q 6 the distance (13) between vortices at the 
magnetic field front may belargeenough. We think that thesecondvariant is preferable, 
for in the Frenkel-Kontorova model only some incommensurate states are depinned 
(Aubry 1980, Peyrard and Aubry 1983). 

Appendix A 

Here we derive equation (8). Let us consider the behaviour of the phase I9 in the region 
ofthelinearregime:I9,6'6 Q l.Let@x) = B'(x)atx+ -.r.Asolutionofthelinearized 
equation (1) in the interval between the centres m and m + 1 may be written as 

@x) =a, exp[(x-mL)/b] + b, exp[- (x - nzL)/6]. 

Substituting (Al) into (2) and (3) one obtains 

a,,,-l exp(L/G) =a,(l-1/6)+bm1/6 

b,-, exp(-L/6) = -a,1/6+bm(1+1/6). 

We shall look for a, and b, in the form 

a, = at-"' 

Hence for unknown a and p' we have 

6 ,  = pt-,. 

all- 116 - t exp(L/G)] + pi/6 = 0 

-ai/6+8[1+1/6-texp(-L/6)] = 0. 

From the condition that the related matrix is equal to zero we obtain 

t1,* = cosh(L/6) + (116) sinh(L/6) i {[cosh(L/S) + (1/6) ~inh(L/'6)]~ - l}1!2 

where t l  > 1 and t2  < 1. Hence 

where y and q are arbitrary and 

= p 1 2 / ~ 1 , 2  = - [ 6 - i - 6 t , , 2  exp(Ll6)lil 

= -(6/i)(l- 1,'s - exp(L/S) ucosh(L/G) + (1/6 sinh(L/6) 
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FigurcBl. The phase difference Bversusx. 

-c ([cosh(L/G)+ ([/6) sinh(L/6)12 - l)"']). (A7) 

The parameters y and q may be found from the condition that the solution under 
consideration decreases at x +  --2; so we obtain the desired relation (8). 

Appendix B 

Now we show that at LL G L 4 I G 6 the Josephson junction with regularly arranged 
pinning centres with spacing L may be described by the Frznkel-Kontorova model. We 
shall use the approach developed by Bryksin er a[ (1989b) and the notation system is 
presented in figure B1. 

Let us denote 8; = (8:) + 8g1)/2. Since the parameter 

CY' = ${4[6@(x)]? + cos q x )  - 1) (B1) 

(B2) 

(B3) 

is independent of x between neighbouring defects, we can easily see that 

(2/S*)(COS 8:) - cos 8:)) = (a;+,)* - (8;)' = 28:(8k+, - 8;). 

Substituting 8; = (19gil - @ ) / L  inro (BI) one obtains 

8;+, - 8; = (Lit?) sin 8;. 

On the other hand, taking into account the phase jump near pinning centres @,:) - 
8:) = 2/8k, we obtain the following relation: 

.4:, = [l/(L + 21)](8; - @A..!) (B4) 

(6*2/Lz)(8L+, - 26; + 82-{) = sin 8;, 

(see figure Bl) .  Substitution of (B4) into (B3) gives 

035) 
Here 6* = 6(2l/L)-'/' istheeffective Josephson length (soliton width). It isevident that 
max(@) = 2/6*. Taking into account the transverse junctions, and using (B5) and the 
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expression for the free energy of a Josephson junction, we obtain the related energy 
functional: 

V V Bryksin et ai 

which coincides with the Frenkel-Kontorova model functional. Then the soliton energy 
is 

E/€ ,  = H,*,/H,, = (U/L)-'". (67) 
Thus the solution pinning energy is 

where E, = (4fi/e)jc6 is the Josephson energy and H,, = 4nEJ/@,. 
For an arbitrary relation between I and 6 ,  one can use the approximate equation 

6* = S[(ZS/L) tanh(i/6)]-',' (69) 
I corresponds to the results of Bryksin et a/ (1989b). which at 6 

So the parameters of Frenkel-Kontorova model, used in equations (9)-(13). are 

A = 21L/62 

E, = (h/2e)j,(6z/l) = (6/161)EJ. (B11) 
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